CS103 Review Session

Studying for the Final

Check out our Preparing for the Exam handout
Review the lecture slides

o Create cheat sheet

o Note which material you're unsure of
Review material you're less confident on

o Reread slides/rewatch lecture

o Redo PSET problems

o Do extra practice problems
Take practice exams
Take the practice final on Wednesday, 8/14, 5:30-8:30,
in Gates 104
Reach out for help if you have questions!

http://web.stanford.edu/class/cs103//handouts/260%20Preparing%20for%20the%20Exam.pdf

And most importantly...
Get lots of sleep, make sure
to eat well on Friday, and
relax!

https://img.huffingtonpost.com/asset/5b9bec7326000035007f4b2f.jpeg?ops=scalefit_720_noupscale

General strategies

Write out everything you know and what you're trying to prove.

What is the quantifier on the statement you're trying to prove? What does that
tell you about how the proof should be set up?

What kind of structure are you trying to reason about? (binary relations, sets,
functions, etc.) You know how to write proofs about all of these! Use proof
templates and formal definitions to guide you.

What proof strategy are you using? What do you get to assume? If you're
doing an indirect proof, would it be helpful to write out the statement in FOL
and negate it?

General strategies

e Make sure you're using all parts of what’s given to you! Usually there’s a good
reason why you need each assumption/condition to get the proof to work.

e Draw pictures! Work backwards! Try a different proof strategy! It's okay if the
first thing you try doesn’t work, just try something else!

Set Theory " G INTERS € CTION

Union @ @

Intersection f\Us\@‘\: Y AN =
Difference Tl Fhirge 1 boTh
]] L WA T B P\ 0\MA 5
Symmetric difference B1€ FERENCE
Subset SHRINETELC
A B DicECre vt
Power set
ST Y/
‘H‘\/t)s M v
ADNB =
M\‘\A g "“"\\\'(5;\\/\,\"0"3

ot wat etk

\$ M
g&?«%*‘ of B

PO WER ST

(€Y
k¥ of 2l svbsetg

ot

Proofs about sets

To show A € B:

e Pick an arbitrary x € A
e Showthatx € B

To show A = B:

e ProveAC B
e ProveB € A

Example set theory proof

Let A and B be arbitrary sets. Prove that A€p(B) ifand only if AN B = A.

Example set theory proof

Let A and B be arbitrary sets. Prove that A€p(B) ifand only if AN B = A.

What ic A?
hat ic B?
W at i 6 Proof 1: We will prove both directions of implication. First, we'll prove that if A € g(B),then ANB =
A. To do so, we'll prove both ANBC Aand ACANB.
Yo Shaw A =5 Let’s begin by showing that A N B € A. To do so, pick any x € A N B. This means in that x € A, and since
. pro ve P\ <R our choice of x was arbitrary, we conclude that A N B C A, as needed.
vy B ' > Next, we'll show that A € A N B. Consider any x € A. We will prove that x € A N B. We know A € @(B),
’ ?W Q'-A which means that A € B. Since x € A and A C B, we see that x € B. Then, since x € A and x € B, we sce

that x € A N B, as required.

For the other direction of implication, assume that A N B = A. We will prove that A € g@(B). To do so,
we will prove that A € B. So pick any x € A. Thensince x€ Aand A=A N B, we see that x € AN B.
Therefore, we see that x € B. Since our choice of x € A was arbitrary, we see that A C B, as required. Bl

Types of proofs

e Universal statements: “for all x...”
o Proof: Pick an arbitrary x, and show that the statement is true
o Disproof: find a counter-example
e Existential statements: “there is an x such that...”
o Proof: Find an example
o Disproof: Pick an arbitrary x and show that the statement is false
e Implications “P—Q”
o Directly: assume P and prove Q
o By contrapositive (IQ — !P): assume !Q and prove P
e Proof by contradiction:
o Assume IP, arrive at a contradiction

First Order Logic

Can help unpack or take the negation of statements we are trying to prove
“‘All P’s are Q’s”: Vx. P(x) — Q(x)

“No P’s are Q’s”: Vx. P(x) — 7Q(x)

“Some P’s are Q’s”: Ix. P(x) A Q(x)

“Some P’s are not Q’s”: A x. P(x) A 7Q(x)

“For any choice of x, there is some y such that P(x,y) is true”: Vx3y. P(x,y)
“There is some x where for any choice of y, P(x,y) is true”: IxVy. P(x,y)

First Order Logic

e V is usually paired with —

e 1 is usually paired with A

e Existential statements are false unless there is a positive example
e Universal statements are true unless there is a counter example

Binary Relations

e Reflexive
o Va€EeA aRa
e Symmetric
o VaeEeA VbeEe A aRb— bRa
e Transitive
o VaeA vVbeA Vvce A aRbAbRc — aRc
o Irreflexive
o Va €EA. a/R a
e Asymmetric
o Vae€A VbeA aRb—¥bRa

Binary Relations

e Reflexive
o Va€EeA aRa
o Proof setup: pick ana € A. Show aRa.
e Symmetric
o Va€A Vbe A aRb— bRa
o Proof setup: pickana € Aand b € A such that aRb. Show bRa.
e Transitive
o VaeA vVbeA Vvce A aRbAbRc — aRc
o Proof setup: pick an a,b,c € A such that aRb AbRc. Show that aRc.

Binary Relations

e Irreflexive
o Va€EA. a/R a
o Proof setup: pick an a € A. Show gRa.
e Asymmetric
o Va€A VbeA aRb4bRa
o Proof setup: pick ana € Aand b € A such that aRb. Show gRa.

Binary Relations

e Equivalence Relations
o Reflexive, symmetric, and transitive

e Strict Orders

o lIrreflexive, asymmetric, and transitive
o OR equivalently, irreflexive and transitive
o OR equivalently, asymmetric and transitive

Example binary relations proof

If R, is a binary relation over a set A, and R; is a binary relation over a set A,, then an embedding of R,
in R, is a function f : A} — Aj; such that

Vae A)..Ybe A,. (aR b & f(a) R, f(b)).
If there’s an embedding of a relation R, in a relation R,, we say that R, can be embedded in R,.

Let R, be a binary relation over a set A; and let R, be a strict order over some set As.
Prove that if R; can be embedded in R,, then R, is a strict order.

TRRE TLEXIVE

Va €N afa What cet is the relation defined over?
W wny is ribaked o Mrselt (Where chould we be picking our arbitrary element from?)
Proof yip:

ide wm a eh. e aﬁlo\.

Example binary relations proof

Proof 1:Let f: A; — A; be an embedding of R, in R,. We will show that R, is a strict order by proving
that it is irreflexive and transitive.

First, we’ll show that R, is irreflexive. Consider any a € A;. Since R; is a strict order, we know that R; is
irreflexive, so f(a)R, f(a). Then, since f is an embedding of R, in R,, we see that aR,a, as required.

Next, we'll show that R, is transitive. To do so, consider any a, b, ¢ € A; where aRb and bR,c. Since f is
an embedding of R, in R,, we then see that f(a)R, f(b) and f(b)R, f(c). Then, since R; is a strict order,
it’s transitive, and so f(a)R; f(c). Finally, since f is an embedding of R; in R,, we use the reverse direc-
tion of the implication to conclude that aRc, as required. ll

Functions
e All functions: f: A—B

o Every input maps to some output
m ForallainA, there exists b in B such that f(a) = b.

o Functions are deterministic: equal inputs produce equal outputs
m Forallal,a2inAifal = a2, then f(a1) = f(a2).

NQI Lonctivns !

7
—“AH 'S D‘CZA’, wob M
D kg of Mra LdoWMia

Wizt b prodywed 38
> 5

Functions

e Injective functions
o Different inputs produce different outputs
o Forallal,a2inA, al#a2 — f(a1) # f(a2).
o Forallal,a2inA, f(a1) =f(a2) —» a1 = a2.

njectiva wot

Functions

e Surjective functions
o For every possible output, there exists at least one possible input that produces it.
o Forall bin B, there exists an a in A such that f(a) = b.

5 wod
NW‘\'\DJ\ SJ r‘Y’-C'("NV-\
® {>°
-) o \ (o
[

o) o

*

Functions

e Bijective functions
o Functions that are both injective and surjective

bt \}M’\’\"’ 2

. “
o) o

Saana 4

Example of function proof

Imagine you have a function f : A — B from some set A to some set B. We can use f to construct a new
function called the lift of f, denoted lift;, from @(A) to g(B). Specifically lift; : go(A) — (B) is de-
fined as follows:

ift(S)={y | IxeS. fx)=y}
Let A and B be sets. Prove that if f: A — B is injective, then lift, is injective.

j{'“}%hw frckhows oA B
“Naeh Va,eh (a0, - ta)#80,)) What function are we trying to prove things about?
A e ot Inpks produee Akt orbpots What ic the domain of that fonction?

Example of function proof

Proof 1: Let f: A — B be an injective function. We will prove that lift, is injective as well. To do so,
consider any Sy, S; € (A) where S; # S;. We will prove that Lift(S;) # Lft(S;).

Since §; # S5, we know that either S; € S, or that S; € S;. Without loss of generality, assume §; € S5,
which means that there is some a € S, where ¢ € S..

First, notice that since a € §;, we see that f(a) € Lift/(S;). We now claim that f(a) ¢ lift(S,). To see this,
suppose for the sake of contradiction that f(a) € S,. This means that there must be some &’ € §; such that
f(@) = f(a). Since f is injective, that tells us that &’ = a, and since &’ € §;, we see that a € §; as well. But
this is impossible, since we know that a ¢ S;. We've reached a contradiction, so our assumption was
wrong and f(a) € lift,(S,).

Since f(a) € lift(S;) but f(a) ¢ lift(S,), we see lift(S;) # Lift,(S,), which is what we needed to show. l

5 minute break!

hole Principle

igeon

The P

Pigeonhole Principle Refresher

 The generalized pigeonhole principle says
that if you distribute m objects into n bins, then

« some bin will have at mosté[m/nji objects in it.

[™/n] means “"/n, rounded up.”
|™/»] means “™/», rounded down.”

Pigeonhole Principle Clues + Tips

1) Look for "at most", "at least”, "less than", or "more than" in the problem
statement. It's not a guarantee but often pigeonhole principle problems use these
terms.

Let's begin with some new definitions. First, we'll say that a matching in a graph G=(V, E)is a
set M C E of edges in G such that no two edges in M share an endpoint. The size of a matching is
the number of edges it contains. The matching number of a graph G, denoted v(G), is the size of
the largest matching in G.

Now, let's introduce a variation on a definition we've seen before. A k-edge coloring of a graph
G = (V, E) is a way of coloring each of the gdges in G one of k different colors so that no two
edges that share an endpoint are assigned the same color. The chromatic index of a graph G, de-
noted y%;(G), is the minimum number of colors needed in any edge coloring of G.

Let G be an undirected graph with exactly n*+1 edges for some natural number n 2 1. Prove that
either %,(G) 2 n+1 or v(G) 2 n+1 (or both).

Pigeonhole Principle Clues + Tips

2) Try writing out all the nouns mentioned in the problem statement and their
quantity (if known).

Let's begin with some new definitions. First, we'll say that a matching in a graph G=(V, E)is a
set M C E of edges in G such that no two edges in M share an endpoint. The size of a matching is
the number of edges it contains. The matching number of a graph G, denoted v(G), is the size of
the largest matching in G.

Now, let's introduce a variation on a definition we've seen before. A k-edge coloring of a graph
G = (V, E) is a way of coloring each of the gdges in G one of k different colors so that no two
edges that share an endpoint are assigned the same color. The chromatic index of a graph G, de-
noted y,(G), is the minimum number of colors needed in any edge coloring of G.

Let G be an undirected graph with exactly n*+1 edges for some natural number n 2 1. Prove that

—ither . () > nil or w(G) >z (or both) Most of the time:
raph (1
\g/ertFijce(s z?) There are more pigeons than holes
d A-2 +1 There is more than one hole
edges .(n) . We know how many holes and pigeons
edges in largest matching (at most n*2 +1) there are

colors (at most n*2 +1) (otherwise the result isn't very interesting...)

Pigeonhole Principle Clues + Tips

2) Try writing out all the nouns mentioned in the problem statement and their
quantity (if known).

Let's begin with some new definitions. First, we'll say that a matching in a graph G = (V, E) is a
set M C E of edges in G such that no two edges in M share an endpoint. The size of a matching is
the number of edges it contains. The matching number of a graph G, denoted v(G), is the size of
the largest matching in G.

Now, let's introduce a variation on a definition we've seen before. A k-edge coloring of a graph
G = (V, E) is a way of coloring each of the ¢dges in G one of k different colors so that no two
edges that share an endpoint are assigned the same color. The chromatic index of a graph G, de-
noted %;(G), is the minimum number of colors needed in any edge coloring of G.

Let G be an undirected graph with exactly n*+1 edges for some natural number n 2 1. Prove that

either %;(G) 2 n+1 or v(G) 2 n+1 (or both). Most of the time:

graph (1)x There are more pigeons than holes
vertices (?) x There is more than one hole

edges (n"2 +1) maybe the pigeons?! 5 he the holes?!| We know how many holes and pigeons
edges in largest matching (at most n*2 +1) there are

colors (at most n*2 +1) maybe the holes?! (otherwise the result isn't very interesting...)

Example Pigeonhole Principle Proof

Let's begin with some new definitions. First, we'll say that a matching in a graph G = (V, E) is a
set M C E of edges in G such that no two edges in M share an endpoint. The size of a matching is
the number of edges it contains. The matching number of a graph G, denoted v(G), is the size of
the largest matching in G.

Now, let's introduce a variation on a definition we've seen before. A k-edge coloring of a graph
G = (V, E) is a way of coloring each of the e¢dges in G one of k different colors so that no two
edges that share an endpoint are assigned the same color. The chromatic index of a graph G, de-
noted %,(G), is the minimum number of colors needed in any edge coloring of G.

Let G be an undirected graph with exactly n*+1 edges for some natural number n 2 1. Prove that
either %;(G) 2 n+1 or v(G) 2 n+1 (or both).

How ds you prove a ctatement of the
form P or Q7

Example Pigeonhole Principle Proof

Let's begin with some new definitions. First, we'll say that a matching in a graph G = (V, E) is a
set M C E of edges in G such that no two edges in M share an endpoint. The size of a matching is
the number of edges it contains. The matching number of a graph G, denoted v(G), is the size of
the largest matching in G.

Now, let's introduce a variation on a definition we've seen before. A k-edge coloring of a graph
G = (V, E) is a way of coloring each of the e¢dges in G one of k different colors so that no two
edges that share an endpoint are assigned the same color. The chromatic index of a graph G, de-
noted %,(G), is the minimum number of colors needed in any edge coloring of G.

Let G be an undirected graph with exactly n*+1 edges for some natural number n 2 1. Prove that
either %;(G) 2 n+1 or v(G) 2 n+1 (or both).

Proof: Let G be an arbitrary undirected graph with n’+1 edges for some positive natural number
n. We will prove that if %,(G) < n, then v(G) 2 n+1.

Suppose that %;(G) < n. This means that there is an n-edge coloring of the graph G. Since there
are n°+1 edges and n colors, by the generalized pigeonhole principle we know that there must be
at least [(n*+1) / nl =n + /a1 = n+1 edges that are all the same color in the n-edge coloring.
Since all those edges are assigned the same color, we know that no two of them can share an end-
point. Therefore, this set of n+1 edges forms a matching, so v(G) 2 n+1, as required. B

Induction

Induction Refresher

Let P be some predicate. The principle of mathematical
induction states that if

1f it starts > P(0) is true ~and it s’fatgs
true..
True.. —
Vk € N. (P(k) - P(k+1)) ——
then
Vn € N. P(n)
then it's

always frue.

Complete vs Regular Induction

e Use regular induction if you can
e Use complete if you need more than just P(k) when proving P(k+1)

Regular induction

Prove base case

Assume P(k)

Complete induction

Assume P(0), P(1)...P(k)

\ Prove P(k+1)

—

Induction Clues + Tips

1) Look for "all natural numbers n" in the problem statement. Pretty much every
induction problem uses that phrase (but there are non-induction problems that do,
too!).

Let's begin with a refresher of the key terms and definitions involved. As a reminder, if L, and L,
are languages over an alphabet Z, then the concatenation of L, and L,, denoted L,L,, is the lan-

guage
Lilb={wxlweLandxe L, }.
from concatenation, we can define language exponentiation of a language L inductively as fol-
OWS:
I =1e} L = L2
You may find these formal terms helpful in the course of solving this problem.
Let A and B be arbitrary languages over some alphabet Z. Prove, by induction,
that if X = AX U B, then A"B C X for every n € N. Please use the formal definitions of

concatenation, language exponentiation, uni d subset in the course of writing up your
answer.

Induction Clues + Tips

2) Look for a link between smaller and larger problems (recursion!).

Let's begin with a refresher of the key terms and definitions involved. As a reminder, if L, and L,
are languages over an alphabet Z, then the concatenation of L, and L,, denoted L,L,, is the lan-

guage
Lilb={wxlweLandxe L, }.
From concatenation, we can define language exponentiation of a language L inductively as fol-
OWS:
LU - {8} Ln.b’. =LLn
You may find these formal terms helpful in the ;c%f solving this problem.
Let A and B be arbitrary lang'fages over some alphabet Z. Prove, by induction,
that if X = AX U B, then A"B C X for every n € N. Please use the formal definitions of

concatenation, language exponentiation, union, and subset in the course of writing up your
answer.

Induction Clues + Tips

3) Think about building up for existential P(n) and building down for universal
P(n).

Let's begin with a refresher of the key terms and definitions involved. As a reminder, if L, and L,
are languages over an alphabet Z, then the concatenation of L, and L,, denoted L,L,, is the lan-
guage

Lilb={wxlweLandxe L, }.

From concatenation, we can define language exponentiation of a language L inductively as fol-
lows:
I =1e} L = L2
You may find these formal terms helpful in the course of solving this problem.
Let A and B be arbitrary languages over some alphabet Z. Prove, by induction,
that if X = AX U B, then A"B C X for every n € N. Please use the formal definitions of

concatenation, lan exponentiation, union, and subset in the course of writing up your
answer.

Induction Clues + Tips

4) Write down P(n) and make sure:
e P(n) will allow you to prove your end goal.
e The definition of P(n) includes n (not all natural numbers n)

Let's begin with a refresher of the key terms and definitions involved. As a reminder, if L, and L,
are languages over an alphabet Z, then the concatenation of L, and L,, denoted L,L,, is the lan-

guage
Lilb={wxlweLandxe L, }.
from concatenation, we can define language exponentiation of a language L inductively as fol-
OWS:
I =1e} L = L2
You may find these formal terms helpful in the course of solving this problem.
Let A and B be arbitrary languages over some alphabet Z. Prove, by induction,

that if X = AX U B, then A"B C X for every n € N. Please use the formal definitions of
concatenation, language exponentiation, union, and subset in the course of writing up your

answer.

Example Induction Proof

Let's begin with a refresher of the key terms and definitions involved. As a reminder, if L; and L,
are languages over an alphabet Z, then the concatenation of L, and L,, denoted L,L,, is the lan-

guage
Lil={wxlweLandxel,;}.
from concatenation, we can define language exponentiation of a language L inductively as fol-
OWs:
LI'J - {8} Ln+1 -‘-LL"
You may find these formal terms helpful in the course of solving this problem.
Let A and B be arbitrary languages over some alphabet Z. Prove, by induction,
that if X = AX U B, then A"B C X for every n € N. Please use the formal definitions of

concatenation, language exponentiation, union, and subset in the course of writing up your
answer.

Example Induction Proof

Proof: Let A and B be arbitrary languages over some alphabet Z where X = AX U B. Let P(n) be
the statement “A"B C X.” We will prove by induction that P(n) is true for all n € N, from which

the theorem follows.

As our base case, we prove P(0), that A’B € X. Consider any w € A"B. This string must be of the
form xy where x € A” and y € B. Since the only string in A" is €, this means that w = gy = y, so
w € B. Then, since w € B, we know that w € AX U B, and therefore that w € X. Since our choice
of w was arbitrary, this shows that every element of A"B is an element of X, so A’B C X, as re-
quired.

For our inductive step, assume for some arbitrary k € N that P(k) holds and that A*B € X. We will
prove that A**'B € X. To do so, consider any arbitrary w € A**'B. We will prove that w € X.

Since A*'B = AA*B = A(A*B), we know see that w € A(A*B). Consequently, there exist some x € A
and y € A*B such that w = xy. Since y € A*B, by our inductive hypothesis we see that y € X. Over-
all, this shows that w = xy where x € A and y € X, so we see that w € AX. Since w € AX, we see
that w € AX U B, or equivalently that w € X, as required. Thus P(k+1) is true, completing the in-
duction. H

Regular Languages

Regular Languages

start Stm
C

(a U b)*aa(a U b)*

‘ 0'1

DFAs NFAs RegEXxs

Designing a DFA

start Z
‘

states = pieces of information
transitions = when | read in a new character,
how might this change what | know?

‘

Designing an NFA

states = pieces of information

start 1 1 transitions = when | read in a new character,
0,1 how might this change what | know?
0 0,1
AND
0,1

nondeterminism = assume you'll magically
"know" when it's time to take the right transition

DFA Construction Example

Let2={a, b}andlet L, = { we 2Z¥ | wdoes not contain bbb as a substring }.
Design a DFA for L.

What are the ctatec? How should my trangitions link
together the ctates?

DFA Construction Example

Let2={a,b}andlet L, = { we Z¥ | wdoes not contain bbb as a substring }.
Design a DFA for L,.

What are the ctatec? How should my trangsitions link
together the ctatec?

Here is one possible solution:

This automaton works by advancing forward every time it sees a b and resetting whenever it sees
an a. If it finds three consecutive b’s, it enters a dead state.

Designing a RegEx

(a U b)*aa(a U b)*

Write out example strings and look for

patterns

Can | separate the strings into different

categories?

a. If yes: UNION the categories together.

Can | break the strings into smaller

subproblems?

a. Ifyes: CONCATENATE each piece
together.

Is there some sort of repeating structure?

a. Ifyes: Use the KLEENE STAR on the
smallest repeating pattern.

RegEx Construction Example

Let2 ={a,b}and L={w € 2* | w has an odd
number of a's}. Write a regular expression for
L.

A

aaa

abb
bab
bba
a0
anabb
bbaaa.
baaab

RegEx Construction Example

Let2 ={a,b}and L={w € 2* | w has an odd
number of a's}. Write a regular expression for
L.

A
aaa - | \We need at least
aéé one a
bab
bba
We can have any
ana number of b's, in
anabb any position
bbaoa
baaab

We can add a's
two at a time to
the original a

RegEx Construction Example

Let2 ={a,b}and L={w € 2* | w has an odd
number of a's}. Write a regular expression for

L.

A

aaa

abb
bab
bba
2o
asabb
bbaaa.
baaab

d

T

We need at least
one a

RegEx Construction Example

Let2 ={a,b}and L={w € 2* | w has an odd
number of a's}. Write a regular expression for

L.

A

aaa

abb
bab
bba
2o
asabb
bbaaa.
baaab

Here is one possible solution:

b*ab*

‘T\\

We need at least
one a

We can have any
number of b's, in
any position

RegEx Construction Example

Let2 ={a,b}and L={w € 2* | w has an odd

We can add a's

number of a's}. Write a regular expression for | 1,0 at a time to

L.
A
ana. Here is one possible solution:
abb
bab
* *
bba b*ab

Al

aaabb
bbaaa

the original a

b*ab*ab*)*

baaab We need at least
one a

We can have any
number of b's, in
any position

RegEx Construction Example

Let2 ={a,b}and L={w € 2* | w has an odd
number of a's}. Write a regular expression for
L.

A
ana. Here is one possible solution:

abb
bab
b b*ab*(b*ab*ab*)*
2o
asabb
bbaoa
baaab

Myhill-Nerode Theorem

Myhill-Nerode Refresher

Theorem: Let L be a language over .
If there is a set S C >* with the following
properties, then L is not regular:

« S is infinite (that is, S contains infinitely many
strings).

« The strings in S are pairwise distinguishable
relative to L. That is,

Vx €S.VyeS. (xzy-=x =, y).

X T

It you pick any two . Then they're
strings in S that arent distinguishable
equal to one another..

relative to L.

Distinguishability Refresher

 Let L be an arbitrary language over .

« Two strings x € Z* and y € X* are called
distinguishable relative to L if there is a string
w € 2* such that exactly one of xw and yw is in L.

« We denote this by writing x =, y.

Myhill-Nerode Clues + Tips

1) Look for "not a regular language" in the problem statement. Pretty much every
Myhill-Nerode problem involves proving that a language is not regular.

Let Z = {a, b}. Consider the following language L, over Z:
Ly={ab"ImneNandm < 2n }
For example, aa € L, aab € L, aabb € L,, aabbb € L,, and aabbbb € L,, but aabbbbb ¢ L.
Prove that L, is not a regular language.

el

Myhill-Nerode Clues + Tips

2) Think about what you need to remember in order to prove that a string is in the

language. Use that to pick an infinite set S. You need to prove that every pair of
strings in S is distinguishable relative to L.

*The strings in S do not need to be in L**

Let Z = {a, b}. Consider the following language L, over Z:

Ly={ab"ImneNandm < 2n }
For example, aa € [, aabe L, aa

€ L,, aabbb € L,, and aabbbb € L,, but aabbbbb ¢ L,.
is not a regular language.

Example Myhill-Nerode Proof

Let 2 = {a, b}. Consider the following language L, over Z:
Ly={ab"ImneNandm<2n}
For example, aa € L, aab € L, aabb € L,, aabbb € L,, and aabbbb € L,, but aabbbbb ¢ L,.
Prove that L, is not a regular language.

Proof:Let S={ a" |l n € N }. The set S is infinite because it contains one string for each natural
number. Now, consider any two strings a", 8" € S. Without loss of generality, assume that n < m.
Now, consider the strings a"b™" and a™b*". The string a"b*" is not in L, because 2m > 2n, so there
are too many b's in the string for it to be in L,. On the other hand, the string a"b*" is in L because
the number of b’s is precisely twice the number of a's. Therefore, we see that a" #,, a™. Since our
choices of a" and a™ were arbitrary, we therefore see that any two distinct strings in S are distin-
guishable relative to L,. Therefore, since § is infinite, by the Myhill-Nerode theorem we see that
L, is not regular. W

Designing a CFG

S—>¢e|a|b]|aSa|bSb

Write out example strings and look for
patterns

Think recursively - look for smaller strings
within larger ones

"For every x | see, | need y somewhere
else" means that x, y need to be added at
the same time

Non-terminals represent different
states/types of strings.

CFG Construction Example

Let2={a,bland L={w € ¥* | w has no a's or no b's}.
Write a CFG for L.

bb
bbbbbb
bb
a
aaa

AQ

CFG Construction Example

Let2={a,bland L={w € ¥* | w has no a's or no b's}.
Write a CFG for L.

bb We can either have
bbbbbb any number of a's or
bb any number of b's
>
A
aaa

AQ

CFG Construction Example

Let2 ={a,b}and L={w € %* | w has either no a's or no
b's}. Write a CFG for L.

We start by

"choosing" a's or b's

Start symbol: S

S—¢|aA|bB
A—aA|c

After we've chosen, - |

we can add as many B - bB | £

of the chosen letter
as we want

Lava Diagram

Lava Diagram

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®/>

®]
R RE ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Hopefully, this gives you a good
starting point for working through
Lava Diagram guestions, Good luck:

(M) | M is a TM and |C(M)|
(M) | MisaTM and |C(M)|
" |n € Nand n > 1000 }
"b" | n € Nand n <1000 }

v

2}
2}

Lava Diagram

Intuition:

Start in ALL and see if you
can move the language in
more

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Hopefully, this gives you a good
starting point for working through
Lava Diagram guestions, Good luck:

(M) | MisaTM and |C(M)| = 2 }
(M) | MisaTM and |C(M)| =2 }
" |n € Nand n > 1000 }
"b" | n € Nand n <1000 }

a
a

Questions?

