
CS103 Review Session

Studying for the Final

● Check out our Preparing for the Exam handout
● Review the lecture slides

○ Create cheat sheet
○ Note which material you're unsure of

● Review material you're less confident on
○ Reread slides/rewatch lecture
○ Redo PSET problems
○ Do extra practice problems

● Take practice exams
● Take the practice final on Wednesday, 8/14, 5:30-8:30,

in Gates 104
● Reach out for help if you have questions!

http://web.stanford.edu/class/cs103//handouts/260%20Preparing%20for%20the%20Exam.pdf

And most importantly...
Get lots of sleep, make sure

to eat well on Friday, and
relax!

https://img.huffingtonpost.com/asset/5b9bec7326000035007f4b2f.jpeg?ops=scalefit_720_noupscale

General strategies
● Write out everything you know and what you’re trying to prove.
● What is the quantifier on the statement you’re trying to prove? What does that

tell you about how the proof should be set up?
● What kind of structure are you trying to reason about? (binary relations, sets,

functions, etc.) You know how to write proofs about all of these! Use proof
templates and formal definitions to guide you.

● What proof strategy are you using? What do you get to assume? If you’re
doing an indirect proof, would it be helpful to write out the statement in FOL
and negate it?

General strategies
● Make sure you’re using all parts of what’s given to you! Usually there’s a good

reason why you need each assumption/condition to get the proof to work.
● Draw pictures! Work backwards! Try a different proof strategy! It’s okay if the

first thing you try doesn’t work, just try something else!

Set Theory
● Union
● Intersection
● Difference
● Symmetric difference
● Subset
● Power set

Proofs about sets
To show A ⊆ B:

● Pick an arbitrary x ∈ A
● Show that x ∈ B

To show A = B:

● Prove A ⊆ B
● Prove B ⊆ A

Example set theory proof
Let A and B be arbitrary sets. Prove that A∈p(B) if and only if A ∩ B = A.

Example set theory proof
Let A and B be arbitrary sets. Prove that A∈p(B) if and only if A ∩ B = A.

What is A?
What is B?

Types of proofs
● Universal statements: “for all x…”

○ Proof: Pick an arbitrary x, and show that the statement is true
○ Disproof: find a counter-example

● Existential statements: “there is an x such that…”
○ Proof: Find an example
○ Disproof: Pick an arbitrary x and show that the statement is false

● Implications “P→Q”
○ Directly: assume P and prove Q
○ By contrapositive (!Q → !P): assume !Q and prove !P

● Proof by contradiction:
○ Assume !P, arrive at a contradiction

First Order Logic
● Can help unpack or take the negation of statements we are trying to prove
● “All P’s are Q’s”: ∀x. P(x) → Q(x)
● “No P’s are Q’s”: ∀x. P(x) → ¬Q(x)
● “Some P’s are Q’s”: ∃x. P(x) ∧ Q(x)
● “Some P’s are not Q’s”: ∃x. P(x) ∧ ¬Q(x)
● “For any choice of x, there is some y such that P(x,y) is true”: ∀x∃y. P(x,y)
● “There is some x where for any choice of y, P(x,y) is true”: ∃x∀y. P(x,y)

First Order Logic
● ∀ is usually paired with →
● ∃ is usually paired with ∧
● Existential statements are false unless there is a positive example
● Universal statements are true unless there is a counter example

Binary Relations
● Reflexive

○ ∀a ∈ A. a R a
● Symmetric

○ ∀a ∈ A. ∀b ∈ A. aRb → bRa
● Transitive

○ ∀a ∈ A. ∀b ∈ A. ∀c ∈ A. aRb∧bRc → aRc
● Irreflexive

○ ∀a ∈ A. a R a
● Asymmetric

○ ∀a ∈ A. ∀b ∈ A. aRb → bRa

Binary Relations
● Reflexive

○ ∀a ∈ A. a R a
○ Proof setup: pick an a ∈ A. Show aRa.

● Symmetric
○ ∀a ∈ A. ∀b ∈ A. aRb → bRa
○ Proof setup: pick an a ∈ A and b ∈ A such that aRb. Show bRa.

● Transitive
○ ∀a ∈ A. ∀b ∈ A. ∀c ∈ A. aRb∧bRc → aRc
○ Proof setup: pick an a,b,c ∈ A such that aRb∧bRc. Show that aRc.

Binary Relations
● Irreflexive

○ ∀a ∈ A. a R a
○ Proof setup: pick an a ∈ A. Show aRa.

● Asymmetric
○ ∀a ∈ A. ∀b ∈ A. aRb → bRa
○ Proof setup: pick an a ∈ A and b ∈ A such that aRb. Show bRa.

Binary Relations
● Equivalence Relations

○ Reflexive, symmetric, and transitive

● Strict Orders
○ Irreflexive, asymmetric, and transitive
○ OR equivalently, irreflexive and transitive
○ OR equivalently, asymmetric and transitive

Example binary relations proof

What set is the relation defined over?
(Where should we be picking our arbitrary element from?)

Example binary relations proof

Functions
● All functions: f: A→B

○ Every input maps to some output
■ For all a in A, there exists b in B such that f(a) = b.

○ Functions are deterministic: equal inputs produce equal outputs
■ For all a1, a2 in A if a1 = a2, then f(a1) = f(a2).

Functions
● Injective functions

○ Different inputs produce different outputs
○ For all a1, a2 in A, a1≠a2 → f(a1) ≠ f(a2).
○ For all a1, a2 in A, f(a1) = f(a2) → a1 = a2.

Functions
● Surjective functions

○ For every possible output, there exists at least one possible input that produces it.
○ For all b in B, there exists an a in A such that f(a) = b.

Functions
● Bijective functions

○ Functions that are both injective and surjective

Example of function proof

What function are we trying to prove things about?
What is the domain of that function?

Example of function proof

5 minute break!

The Pigeonhole Principle

Pigeonhole Principle Refresher

Pigeonhole Principle Clues + Tips

1) Look for "at most", "at least", "less than", or "more than" in the problem
statement. It's not a guarantee but often pigeonhole principle problems use these
terms.

Pigeonhole Principle Clues + Tips
2) Try writing out all the nouns mentioned in the problem statement and their
quantity (if known).

graph (1)
vertices (?)
edges (n^2 +1)
edges in largest matching (at most n^2 +1)
colors (at most n^2 +1)

Most of the time:

There are more pigeons than holes
There is more than one hole
We know how many holes and pigeons
there are
(otherwise the result isn't very interesting...)

Pigeonhole Principle Clues + Tips
2) Try writing out all the nouns mentioned in the problem statement and their
quantity (if known).

graph (1)
vertices (?)
edges (n^2 +1)
edges in largest matching (at most n^2 +1)
colors (at most n^2 +1)

Most of the time:

There are more pigeons than holes
There is more than one hole
We know how many holes and pigeons
there are
(otherwise the result isn't very interesting...)

maybe the pigeons?!

maybe the holes?!

maybe the holes?!

Example Pigeonhole Principle Proof

How do you prove a statement of the
form P or Q?

Example Pigeonhole Principle Proof

Induction

Induction Refresher

Complete vs Regular Induction

Prove base case

Assume P(k) Assume P(0), P(1)...P(k)

● Use regular induction if you can
● Use complete if you need more than just P(k) when proving P(k+1)

Prove P(k+1)

Regular induction Complete induction

Induction Clues + Tips

1) Look for "all natural numbers n" in the problem statement. Pretty much every
induction problem uses that phrase (but there are non-induction problems that do,
too!).

Induction Clues + Tips

2) Look for a link between smaller and larger problems (recursion!).

Induction Clues + Tips

3) Think about building up for existential P(n) and building down for universal
P(n).

Induction Clues + Tips
4) Write down P(n) and make sure:
● P(n) will allow you to prove your end goal.
● The definition of P(n) includes n (not all natural numbers n)

Example Induction Proof

Example Induction Proof

Regular Languages

Regular Languages

DFAs NFAs RegExs

Designing a DFA

states = pieces of information
transitions = when I read in a new character,
how might this change what I know?

Designing an NFA

states = pieces of information
transitions = when I read in a new character,
how might this change what I know?

AND

nondeterminism = assume you'll magically
"know" when it's time to take the right transition

DFA Construction Example

What are the states? How should my transitions link
together the states?

DFA Construction Example

What are the states? How should my transitions link
together the states?

Designing a RegEx
1. Write out example strings and look for

patterns
2. Can I separate the strings into different

categories?
a. If yes: UNION the categories together.

3. Can I break the strings into smaller
subproblems?
a. If yes: CONCATENATE each piece

together.
4. Is there some sort of repeating structure?

a. If yes: Use the KLEENE STAR on the
smallest repeating pattern.

RegEx Construction Example

Let Σ = {a, b} and L = {w ∈ Σ* | w has an odd
number of a's}. Write a regular expression for
L. a

aaa
abb
bab
bba
aaa

aaabb
bbaaa
baaab

...

RegEx Construction Example

Let Σ = {a, b} and L = {w ∈ Σ* | w has an odd
number of a's}. Write a regular expression for
L. a

aaa
abb
bab
bba
aaa

aaabb
bbaaa
baaab

...

We need at least
one a

We can have any
number of b's, in
any position

We can add a's
two at a time to
the original a

RegEx Construction Example

Let Σ = {a, b} and L = {w ∈ Σ* | w has an odd
number of a's}. Write a regular expression for
L.

a

a
aaa
abb
bab
bba
aaa

aaabb
bbaaa
baaab

...
We need at least
one a

RegEx Construction Example

Let Σ = {a, b} and L = {w ∈ Σ* | w has an odd
number of a's}. Write a regular expression for
L.

Here is one possible solution:

b*ab*

a
aaa
abb
bab
bba
aaa

aaabb
bbaaa
baaab

...
We need at least
one a

We can have any
number of b's, in
any position

RegEx Construction Example

Let Σ = {a, b} and L = {w ∈ Σ* | w has an odd
number of a's}. Write a regular expression for
L.

Here is one possible solution:

b*ab*(b*ab*ab*)*

a
aaa
abb
bab
bba
aaa

aaabb
bbaaa
baaab

...
We need at least
one a

We can have any
number of b's, in
any position

We can add a's
two at a time to
the original a

RegEx Construction Example

Let Σ = {a, b} and L = {w ∈ Σ* | w has an odd
number of a's}. Write a regular expression for
L.

Here is one possible solution:

b*ab*(b*ab*ab*)*

a
aaa
abb
bab
bba
aaa

aaabb
bbaaa
baaab

...

Myhill-Nerode Theorem

Myhill-Nerode Refresher

Distinguishability Refresher

Myhill-Nerode Clues + Tips

1) Look for "not a regular language" in the problem statement. Pretty much every
Myhill-Nerode problem involves proving that a language is not regular.

Myhill-Nerode Clues + Tips
2) Think about what you need to remember in order to prove that a string is in the
language. Use that to pick an infinite set S. You need to prove that every pair of
strings in S is distinguishable relative to L.

*The strings in S do not need to be in L**

Example Myhill-Nerode Proof

Designing a CFG

1. Write out example strings and look for
patterns

2. Think recursively - look for smaller strings
within larger ones

3. "For every x I see, I need y somewhere
else" means that x, y need to be added at
the same time

4. Non-terminals represent different
states/types of strings.

CFG Construction Example

Let Σ = {a, b} and L = {w ∈ Σ* | w has no a's or no b's}.
Write a CFG for L.

bb
bbbbbb

bb
a

aaa
aa
...

CFG Construction Example

Let Σ = {a, b} and L = {w ∈ Σ* | w has no a's or no b's}.
Write a CFG for L.

bb
bbbbbb

bb
a

aaa
aa
...

We can either have
any number of a's or
any number of b's

CFG Construction Example

Let Σ = {a, b} and L = {w ∈ Σ* | w has either no a's or no
b's}. Write a CFG for L.

We start by
"choosing" a's or b's

After we've chosen,
we can add as many
of the chosen letter
as we want

Lava Diagram

Lava Diagram

Lava Diagram

Intuition:

Start in ALL and see if you
can move the language in
more

Questions?

